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ABSTRACT

The main objective of this study is to find a wavelet-based, feature extracting
algorithm for push-to-talk transmitter identification. A distance-measure algorithm
is introduced to classify signals belonging to one of four transmitters. The signals
are first preprocessed to put them into a form suitable for wavelet analysis. The
preprocessing scheme includes taking envelopes and differentials. Median filtering
is also applied to the envelopes and the differentials to denoise the data. The pre-
processed data takes on a pulse-like shape, which is suitable for wavelet processing.
The distance algorithm is applied to the outputs (scales) of the wavelet transform.
The distance algorithm uses local extrema of the wavelet coefficients, and computes
the distance between the local extrema of a template and the processed signals. A
small distance implies high similarity. A signakl from each transmitter is selected as
a template. The distance measure is computed between any signal of interest and
the reference templates. The signals are identified to belong to one of four transmit-
ters according to the distance measure. A small distance measure indicates that the
signal belongs to the transmitter from which the template originated. The distance
algorithm can classify correctly the four different signal sets provided for the research

and, even at lower signal-to-noise levels, good identification is achieved.
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I. INTRODUCTION

Signals produced by different transmitters have different characteristics. The
transient response, obtained when the transmitter is turned on or off, is basically a
build-up from off-state to on-state, or vice versa. These responses are unique to the
specific transmitter and differ even among units of the same make and model. This
observation applies only to the turn-on response. Therefore, a technique to extract
the uniqueness of the turn-on transients will help to identify the transmitter.

Time-frequency analysis of stationary signals is a well-known subject. The
Fourier Transform method is quite efficient for this kind of analysis. However, when
the signal of interest is non-stationary, the Fourier Transform method is not appro-
priate, because it uses as a basis function the complex exponential that expands over
infinite time. That is, it lacks the time-evolution of frequencies that is very important
for the analysis of transients of short duration.

A sliding time-window was introduced by Gabor (1946) to gain time informa-
tion from the Fourier Transform method. This modified Fourier Transform method
is called the Short-Time Fourier Transform (STFT), and uses a modulated window
as a basis function. The STFT looks through the window, and processes just a small
portion of the signal and, by sliding the window, processes another small portion of
the signal successively. Thus, once a window has been chosen, time-frequency reso-
lution is fixed. The problem with this method is that the signal must be stationary
within these small portions, or else the method will have limitations in reflecting the.
time-evolution of frequencies within the window.

Another techni(iue for transient sigﬁal analysis is the Wavelet Transform (WT),
which seems more efficient in terms of time evolution of frequencies than the STFT.

Basis functions of the WT, unlike the complex exponential of the Fourier Transform,




do not have infinite duration. They are nonzero for only a short duration. Accord-
ingly, this “compact support” makes the WT localized, not only in frequency but
in time as well. Moreover, wavelets provide the flexibility to choose the particu-
lar wavelet function that is appropriate for a specific application. This is possible
since there are a large number of compactly supported wavelets that can be used as
orthogonal basis functions.

The purpose of this thesis is to investigate the use of the Wavelet Analysis
for the classification of transient signals of push-to-talk transmitters, and to find an
algorithm to identify transmitters. Chapter II gives a brief introduction to wavelet
analysis and median filtering. Chapter III explains the algorithms to identify the
push-to-talk transmitters, and Chapter IV shows the results and presents the recom-

mendations for future studies.




II. SIGNAL DECOMPOSITION AND MEDIAN
FILTERING

A. CONCEPT OF A BASIS

A linear independent set S of vectors {v;} forms a basis of the space V if

every element x € V can be represented in the form of a series

X = Z CeVi, (21)
k

where ¢;’s are the coefficients.
A set S of vectors are said to be linearly independent if and only if there are

numbers ¢, Cg, ...Cn, ..., all of which are zeros, such that

avi+cve+ ... +cevp+... = 0.

B. INNER PRODUCT SPACES

An inner product space is a vector space V with-an inner product defined
on it. If x = (z1,22,...,2,) and ¥y = (y1,¥2,-..,¥n) are vectors in V, then the inner

product of x and y are defined by

x,y) =xT.y* =11.97 + 2095 + ... + Ty (2.2)

Thus, an inner product of x and y is a mapping from x.y, cartesian product space,
into the scalar product field.
The inner product has the following properties:

Let x, y, z be vectors in V, and ¢ any real-valued scalar, then

(x+y)hz) = (x2)+(yz).
(xy) = (yx).

( .

{

cx,y ) =c{yx).
x,X ) >0 with equality if and only if x = 0.

Functions like f (z), on the interval 0 < z < X, can be thought of as a vector

with a continuum of components along the whole interval. In this case, the summation
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can be replaced by integration (Burrus and Gopinath, 1993) to find the length of the

vector:

=@ e (2.3)

Inner products of two functions f (z) and g(z) also can be produced in the same

manner:
(f@9@) =g = [ g (@) ds,

where f (z) and g (z) are defined between 0 < z < X.

C. ORTHONORMAL BASES

Any two vectors are called orthogonal if they are perpendicular to each other.
A basis V1, V5,...V, is called orthonormal if all the elements of Vi, Vs, ..., V, are or-
thogonal to each other, and || V; || =1,i=1,2,...,n (Strang, 1976).

V1, Va, ..., V, is said to form an orthonormal basis set if the inner product is

v _ J 0 when i#7
( VeV >—{1 when i=37.

D. FOURIER TRANSFORM

The Fourier Transform of a square integrable function f (¢) is defined by

F)= [~ f@ed = (1), &, (24)

which is called the Fourier Analysis Formula. The inverse Fourier Transform is given

by

£(6) = -«1—/°° F(w)e“tdw (2.5)

which is the Synthesis Formula.




E. SAMPLING

The Sampling Theorem allows us to convert the analog signal to a discrete
form for discrete signal processing. The main idea is to take samples from a signal at
such a rate that the sequence of samples uniquely defines the original analog signal.

Let fr(t) denote the signal obtained by weighting the periodic sequence of
delta functions spaced T' seconds apart by the sequence of numbers { fr (t)}; then,

the sampled signal is
fr(t) = Z f(nT) 6 (t — nT). (2.6)

F. DISCRETE FOURIER TRANSFORM

The Discrete Fourier Transform of a square summable function
f(n),n=0,1,2,..N, is defined by

F(k)= Z fn)e i Fhn, (2.7)
Its inverse is given by
1 N-1 .
=~ kzo F(k)ewm . (2.8)

G. SHORT TIME FOURIER TRANSFORM (STFT)
1. Introduction

It can be seen from Equation (2.4) that the Fourier Transform of a signal
does not reflect the time-evolution of the frequencies (Vetterli and Kovacevic, 1995).
Because it does not show how the frequencies vary with time, it is not possible to
extract the transient anomalies in the signal, which is spread over all frequencies.

Gabor (1946) proposed a time-frequency localization technique, which is known
as the Short Time Fourier Transform (STFT). In this transform, the signal first is




divided into short consecutive segments, and then the Fourier Transform of each seg-
ment is computed. The problem with this transform is the poor time resolution if the

transient phenomena is shorter than the time window.
2. The Continuous STFT

In order to obtain the STFT of the signal, the standard Fourier Transform is

modified by inserting a time window g (¢) in Equation (2.4) as follows:

F(w, 1) :/_Zf(t) gt — ) e dt. (2.9)

Equation (2.9) is called the Short Time Fourier Transform (STFT). When the
window g (¢) is Gaussian, the STFT is called the Gabor Transform.

3. The Discrete STFT

We can obtain the discrete STFT by sampling the continuous STFT, Equation
(2.9), on a uniform grid (Akansu and Haddad, 1992) such that

w=kwy, T=nr.

Thus, we obtain the discrete STFT

F(k,n) = /_ T F() gt — nm) et gt (2.10)

= (f(®),&™" g"(t - n7)).

This is the inner product of the signal f (¢) and the modulated window g (2).
The inner product yields large values when f (¢) has sinusoids at or near the frequency
kwo. The inner product is small at the resolution cell kwg, nro when f (¢) has sinusoids
at locations other than kwy.

The inner product F' (k,n) is calculated for each window location n7y. Then
the window is shifted to the next location, (n + 1) 7y, and F (k,n) is calculated for
that resolution cell, kwp, (n+1) 7. This procedure generates a two-parameter family
F'(k,n), which can be plotted on a time-frequency grid as shown in Figure 2.1 (Akansu
and Haddad, 1992).




o

Frequency

Time n

Figure 2.1. Time-frequency grid for the discrete STFT

The STFT, Equation (2.9) can also be interpreted as the convolution of g (t)
£ g (—t) with the modulated signal e™7**f (t) such that

F(w, t)=g(t)xe 7" f (1), (2.11)

where g (t) is the time reversal of the window ¢ (¢) and “+” denotes the convolution

operation. The convolution can be shown schematically as in Figure 2.2.

f@) gt) p—» F(w,t)

e—jwt
Figure 2.2. Convolution to obtain STFT

If wy in Figure 2.2 is discretized, the modulated filter bank is obtained. If the

output of Figure 2.2 is also sampled at ¢ = n7y, the corresponding discrete STFT is

obtained, as shown in Figure 2.3.




F (0w, t) \ F (0w, n7o) £ F(0,n)

——»@—» gt To —
e—jowot

F (lwo, t) \ F (1wg, n1o) = F(1,n)

g (t). - -
e—jlwot
F(2,n)

-0 F (2w, t). F (2wp, np)
g To
e—j2wot

F (kwo, )\ T (kwo,n7o) £ F(k,n)

() -
70
e—jkwot

Figure 2.3. The discrete STFT as the modulated filter bank

>

f(&)—>

H. WAVELET TRANSFORM (WT)

The Wavelet Transform (WT) is founded on a set of specific basis functions,
which are called “little waves” or wavelets (Young, 1993). They include short du-
ration/high frequency and long duration/low frequency functions. Each element in
the wavelet set is constructed from the same function, which is called the “analyzing

wavelet” or the “mother wavelet.”
1. Continuous Wavelet Transform (CWT)

The Wavelet Transform of a function f (¢), with respect to the mother wavelet

¥ (¢) is given by

W, (a,b) = %/_‘” £ 1/,*(%) dt, c€R*, be R (212)
: 1 t—b '
= (f (1), 7a 111(7)),

where superscript “x¥” denotes a complex conjugate, and a and b are scaling and
) 1

translation parameters, respectively. The normalization term - assures that the

energy of the scaled mother wavelet is the same as that of the mother wavelet.
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There are three conditions for a function to be a mother wavelet. It must be
oscillatory, it must decay to zero, and it must integrate to zero (Young, 1993).

As can be seen from the Equation (2.12), the wavelet family incorporates
shifted and scaled versions of the mother wavelet, ¥ (t). If we define the wavelet

family as {%as (t) }a, where

L
va

then this enables us to rewrite Equation (2.12) as

Yab (t) = wﬁify (2.13)

Wiah) = [ @) d (2.14)

- o0

= <f (t)a wab (t» :

The Continuous Wavelet Transform is invertible, provided that the mother
wavelet 9 (t) satisfies the admissibility condition (Young, 1993). A wavelet is admis-
sible if the admissibility constant, Cy, satisfies the following inequality

00 2
cgp:/o OF 4 < oo (2.15)

w

where ¥ (w) is the Fourier Transform of the wavelet ¥ (¢).
If the admissibility condition is met for the wavelet function, the inverse CWT

exists, and is given by

Ft) = c%,, I I aliwf(a, b) Yus (£) dadb. (2.16)

2. Discrete Wavelet Transform (DWT)

The Discrete Wavelet Transform (DWT) can be obtained by sampling a, b in
Equation (2.13) at

a=ay’, b= kbyay”. (2.17)

Then the wavelet family takes the form




Vit () = ai/® v (aft — kbo), (2.18)

where j,k € Z. If this wavelet family is complete in L* (R) for some choice of 1 (t),
a, and b, then the set {1} are called frames (Vetterli and Kovacevic, 1995). Now
f(t) in L? (R) can be expressed as —

f@)= Z > dik e (1), (2.19)

where the wavelet coefficient dj; is the inner product

dir = (f (1), Y5 (1)) (2.20)
- a{;”/_oof(t) " (aht — kby).

Since the sets are frames not bases, they do not satisfy the Parseval’s Theorem.
Also the expansion, Equation (2.19) is not a unique use of frames.

A family of wavelet functions, {¢;;} is said to be a frame if there exists
0 < A < B < o0, such that, for all f(¢) in L? (R),

Allf@) IIP< Z; I s, £ ) IP< B F () 12, (221)

where A and B are frame bounds (Vetterli and Kovacevic, 1995).

When the two frame bounds are equal, the frame is called a tight frame. If
¥;k is a tight frame, with a frame bound A = 1, and if || ;% ||>= 1 for all j, k, then
;i forms an orthonormal basis (Vetterli and Kovacevic, 1995).

Since ;. is a tight frame, Equation (2.21) becomes

> Xk: Il (s, f O IP= AN F )12 (2.22)

The reconstruction formula can be derived from the Equations (2.19), (2.20), and
(2.22) as

F@ =222 (i, [ () se. - (2:23)

J

SN
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When A = 1, Equation (2.23) is equivalent to Equation (2.19).

Sampling a and b in CWT, Equation (2.13), as stated in Equations (2.17) and
-(2.18), makes the translation steps, b = kboag”, proportional to the time scaling,
a = aj’. Accordingly, large scale values correspond to good time resolution, whereas
small scale values correspond to poor time resolution.

The uncertainty principle states that, for a given transform pair, f (t) « F (w),
the inequality

1
00w 2 = (2.24)

\}

holds, where ¢; and o, are defined as follows (Akansu and Haddad, 1992):

oo LELSOFd 5 [ F (@) d
YTOTIf@Pd T YT [F(w)Pdw

where the integration equation limits 00 are suppressed.
As seen in Equation (2.24), there is a lower bound for the product o, o,,; thus,
an enhancement in one domain results in degradation in the other domain. Figure

2.4 shows the time-frequency tiling for the WT.

}

to
Figure 2.4. Time-frequency tiling for the WT'

3. Multiresolution Analysis

a. Multiresolution Spaces

A multiresolution analysis consists of a sequence of closed subspaces

11




.V, CV_;CVqCV;CV,. (225)

such that it has the following properties (Vetterli and Kovacevic, 1995):

(a) Completeness:

NV,={0}, UV,=L*R) jeZ (2.26)
(b) Scaling Property:

F(8) €V, o F(2) € V;as (2.27)
forany function  f € L}(R)

(c) Existence of Basis:

There exists a scaling function ¢ € V;, such that

(W)} =272t - k) VieZ (2.28)'

is an orthonormal basis for V.

Equation (2.25) is illustrated via a Venn diagram in Figure 2.5. The
basic idea in multiresolution analysis is successive approximations. As can be seen
from Figure 2.5, a signal in L? (R) can be approximated by a coarse representation
V;, which is spanned by ¢;x. The difference between the original signal and its
approximation is the detail. This allows the vector space V; to be divided into two

parts such as

Vi=V.io W, (2.29)
Vo1 LW, _y,

where W_; is defined as the orthogonal complement of V;_; in V;, and it provides
the detail information to go from subspace V;_; to V;. The symbol “@” stands for
direct sum, and it means that each element of V; can be written as the sum of the

elements of W, _; and the elements of V;_;.

12




Figure 2.5. Equation 2.25 illustrated via a Venn diagram

L? (R) also can be represented by the direct sum as

L R)=V;, ® Z Wj, (2.30)
j2Jjo .
as illustrated in Figure 2.6.
WoiWo| W, W, Ws ¢oe L?(R)
4>
- v,
g Ll 7
-g— |,
P

Vi

Figure 2.6. Multiresolution representation of L? (R)

b. Scaling and Wavelet Functions

Equation (2.28) gives the scaling function, ¢;¢, which spans the coarse
approximation space V;, and Equation (2.18) gives the wavelet function, 9;x, which
spans the difference information space W,. Together, they can represent any signal
in V4. It is also possible to interpret V; and W as lowpass and highpass portions

of the space V.

13




Equations (2.18) and (2.28) imply that both ;. and ¢; are sets of
translates of dilated functions of 9; and ¢;, respectively. In Equation (2.28), j is
a scale factor. When j > 0, ¢;; narrows, V; gets wider accordingly, which results
in finer detail. If j < 0, ;i stretches, V; gets narrower, and ends up with coarser

resolution.
Let ¢ C V, be a scaling function. The translates of the dilated ¢ (%)

span Vy. Thus, the scaling function ¢ (¢) can be represented as a linear combination

of translations of ¢ (2f) as

d’(t) = Zho (k) ¢(2t - k)’ ke Z’ (2'31)

k
where the hg (k)’s form a sequence of real or complex numbers called scaling function

coeflicients.
Let 9 (t) be an element of subspace Wy. The subspace Wy itself is

a subspace of V; spanned by ¢(2t). Therefore, ¥ (¢) can be written as a linear

combination of translates of ¢ (2¢):

V(&)= hi(k) ¢(2t — k), k€ Z, (2.32)

where the h; (k)’s are wavelet coefficients.

It should be noted that since ¢ (¢) and 9 () span two orthogonal spaces,
ho (k) and hy (k) also should be orthogonal. Hence, orthogonality of V and W, can
be achieved by requiring that

(ho (K), by (K)) =0. (2.33)

This allows the wavelet coefficients, h; (k), to be related to the scaling coefficients,
ho (k), such as

hi(k) = (=1)*ho(N — 1 — k), (2-34)

assuming N is the even number of coefficients. Then, the inner product in Equation

(2.33) becomes

14




(ho (k), b1 (K)) = ho (k)ha (k) - (235)

Therefore, any function f (¢) in L?(R) can be written as

o0

f@)= > adelt +Z Z ik Yy (1) (2.36)

k=—c0 I=lk=—o0
where a; and dj;, are the Discrete Wavelet Transform Coefficients. They are defined

as

w = (FO.6.0)= [ O (237)
dp = (F@n®) = [ FOwn)a

where ¢ (t) and ;i (t) are real functions.

Equation (2.36) states that any function in L? (R) can be written as a
linear combination of the scaling function at a fixed scale plus a linear combination
of wavelet functions at higher scales.

The scaling coefficients kg (k) should be chosen carefully to ensure that
the resulting scaling function has compact support. For that reason, they must satisfy
some necessary conditions given below (Newland, 1992). The development of these
conditions are provided in Appendix A.

(a) The sum of the scaling coefficients should be equal to two.

> ho(k)=2. (2.38)

(b) If a solution to Equation (2.32) exists, [ ¢ (t)dt = 0, and
J 1#(t)|*dt = 1, and an integer number of translations of ¢ (t) are orthogonal to each
other, as defined by

(@) 0 () = [ 656" (¢ — k) dt Mm={§ e

15




then

> ho(n)ho(n — 2k) =26 (k). (2.39)

(c) The sum of the squares of the coefficients is equal to two.
Let k£ = 0; Equation (2.39) then becomes

20 o (n) [ =2. (2.40)

(d) The individual sums of the odd and even terms of kg (k) are equal

to one.

Sl + 52 - 27
where NV is even and
N/2-1
Si= > ho(2k), , (2.41)
k=0
and
N/2-1
Sp= Y ho(2k +1). (2.42)
k=0 :

c. Frequency Domain

The DFT of hg (k) is defined as

Hw)= S ho (k)= (2.43)

Recall that Equation (2.31) can be interpreted as a convolution between Aq (k) and
¢ (2t). In this case, ho (k) can be viewed as an FIR digital filter impulse response
and, accordingly, H (w) is the filter’s frequency response.

If zero is substituted in frequency w in Equation (2.43), the d.c. re-

sponse of the FIR filter is obtained as:

16




H©O) =3 ho(k). (2.44)

The right hand side of Equation (2.44) should be equal to two as the result of the
necessary condition stated in Equation (2.38). Thus, the necessary condition, Equa-
tion (2.38), is equivalent to requiring the FIR filter’s frequency response at d.c. to be
two.

If the integer translates of ¢ are orthogonal, then the constraint defined

in Equation (2.38) is true, if and only if

|Hw)?+|H((w + 7)|?=4. (2.45)

If equation (2.44) is viewed as an FIR filter, hq (k) is called a quadrature mirror filter
impulse response (QMF) (Burrus and Gopinath, 1993).

d. Filter Banks and Discrete Wavelet Transform

Multiresolution analysis can be implemented by using a technique called
Multiresolution Pyramid Decomposition or Mallat’s algorithm (Vetterli and Kovace-
vic, 1995).

Let f be a real function in V1. Since {25 ¢ (27+1¢ — k)} spans Vi,

f can be represented as

t) = agrik 2T ¢ (2971t — k) = > age bk (t), (2.46)
k k
where
ag+iyk = (f (), oG+ () /f ¢ (27t — k)dt. (2.47)

Next, since V41 = V,;® W, f can be expressed as the sum of two functions, one

lying in V; and the other in the orthogonal complement W;. Hence,

Z a’]k(ﬁﬂ» + Z djkll/)]k (248)
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where the DWT coefficients aj; and dji are given by

Qi = <¢jkaf(t)> (2-49)
As mentioned earlier, the first term in Equation (2.48) is the coarse
approximation, which is the lowpass portion of f (t), whereas the second term contains

the detail information, which is the highpass portion of f (¢).
From Equations (2.31) and (2.32), we have

6(8) = Sho (k)6 (2t — k),
B (t) = Sh ()6 (2 — B)

$(2t—n) = S ho(k) 6(2(2¥t - n) - k) (2.50)

= > ho(k) ¢(2 ¢t — 2n — k)
k

Let m = 2n + k or k = m — 2n, which leads to

¢ (27t —n)=> ho(m — 20)¢ 2+t — m). (2.51)

Now, to obtain the DWT coefficients a;; and dj, Equation (2.50) is substituted into

Equation (2.49). Assuming all the values are real,

ajr = (B, f (1)) (2.52)
= [0 2" s@t - k)

= /jof(t) 297 S ho(m — 2k) ¢t — m)

= Tho(m—2k) 272 [ f(t) 2 4@t — m)

—00

= 2_1/2Zh0 (m - Zk) AG+1)ym -
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dje = 2723 by (m — 2k) age1ym- (2.53)

Equations (2.52) and (2.53) are convolutions followed by subsampling.
These operations are illustrated in Figure 2.7, where ho (k) and h, (k) are given by

ho(k) = ho(—k) (2.54)
hi(k) = hi(-k).

— 2712 by (k) i : ——a;

aG+1) k

— 2Rk (2 —eds

Figure 2.7. One stage of multiresolution signal decomposition

Therefore, the Discrete Wavelet Transform Coeflicients at scale j are obtained
by convolving the coefficients at scale j + 1 with ho(—k) and hy (—k), and then
decimating to produce the expansion coeflicients at scale j. Figure 2.8 shows the im-
plementation of Equations (2.52) and (2.53) for three levels. The notation LP stands
for lowpass FIR filter whose weights are hg (—k), and HP stands for the highpass FIR
filter whose weights are h; (—k).
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Figure 2.8. Three levels of multiresolution analysis

1. MEDIAN FILTERS

A median filter consists of a sliding window. The center value in the window is

replaced by the median of the values within the window. The median of n observations

z;,t = 1,2,...,nis given by

_’f(v_*_l) B n= 27) + 1 (2.55)
3 (x(v) + 33(1;+1)) ,n=2v

med () = {

where z(;)y denotes the center value of n observations (Pitas and Venetsanopoulos,

1990).
A median filter of size n = 2v + 1 is defined by the following input-output

relation:
¥ =med (Ticy, ..y Tiyooey Tigy) 1E 2,

where z; is the input sequence and y; is the output sequence. An example of median
filtering of size n = 3 is shown in Figure 2.9. The input takes on three values: 0, 1,

2. As can be seen in Figure 2.9, the output sequence is 3-valued and does not contain

isolated jumps at n = 2 and n = 8.
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Figure 2.9. (a) Input z to median filter. (b) Output y from median filter.

Median filtering is a nonlinear operation. The main advantage of this kind
of nonlinear filtering is its computational simplicity and robustness. Furthermore, it
has good edge properties. As will be seen in Chapter III, data processing, wavelet
analysis, and signal identification are used to separate the signals according to the
transmitter from which they originate. The data processing uses median filtering and

extracts the envelope. The wavelet analysis uses a Daubechies wavelet in the Mallat
| algorithm. The signal identification uses a distance criteria based on selected wavelet

scales and wavelet coefficients.
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III. WAVELET SIGNAL PROCESSING

A. INTRODUCTION

Mallat’s Pyramid Algorithm was used to obtain the Discrete Wavelet Trans-
form (DWT). All programs related to preprocessing and wavelet processing, as well
as to signal identification are written in Matlab, a product of Mathworks, Inc. (1992),
and are given in Appendix D. The signals used in this analysis do not lend them-
selves directly to wavelet analysis. Therefore, the processing phase is divided into
two parts: a preprocessing phase where the signals are exposed to linear and non-
linear operations, and an identification phase, which will be explained in subsequent
sections.

The signals are turn-off/turn-on transients from push-to-talk radios. Nine
transmissions from four different transmitters were used in the identification part of
this thesis.

B. PREPROCESSING PHASE

1. Turn-On Signals from Push-To-Talk Radios

The signals used in the analysis were collected and recorded by the Naval
Security Group Activity, Charleston, SC. Nine turn-on/off samples of each of four
transmitters were recorded. All the radios were Motorola models. Each radio is

identified by its model name and number and is tabulated below:

Radio: . Model:
Transmitter 1 (Trl) Maxtrac
Transmitter 2 (Tr2) Saber
Transmitter 3 (Tr3) HT440
Transmitter 4 (Tr4) Saber

Tr2 and Tr4 are different radios of the same model.

The carrier frequency of the radios was 138.525 MHz. The signals were filtered
at 1 Mhz Bandwidth (BW), and then digitized with a sampling frequency of 5 Mhz
and a center frequency of 1.075 Mhz.

The recordings from each transmitter are numbered from one to nine. Figure

3.1 shows the first turn-on signal of the four transmitters. It can be noticed that
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the recordings differ from each other in duration as well as in the type of waveform
produced during the transition part. The turn-off response was also examined, but
did not lead to any identification clues and was, therefore, not included in the results
section. |

The information useful for the identification of the transmitter lies in the en-
velope, which is the low frequency component of the signals. Wavelet Transforms are
not useful in analyzing low frequency, but are well-suited for short duration phenom-
ena. Thus, we need to transform the data into a form suitable for wavelet analysis. A
preprocessing scheme is applied to the signals to transform them into a usable form,
and to improve the signal-to-noise ratio (SNR), as presented in the next section. It
should also be noted that the SNR’s of the recordings are not known, and a denoising

process would definitely enhance the identification performance.
2. Preprocessing Scheme

There are four steps in the preprocessing phase: taking the envelope, median
filtering, differentiating, and a final median filtering. Prior to taking the envelopes,
the d.c. terms were removed. 100-point median filters were used for filtering the
envelope, whereas a 50-point median filter was used after the differentiation. The
sizes of the median filters were determined experimentally. The main reason for
using median filtering was to avoid broadening the signal, which usually is caused by
convolutional operations.

The preprocessed signals for the first recordings from the four transmitters
are shown in Figure 3.2. All of the four final pulse-shaped signal waveforms seem
to be appropriate for WT analysis. The preprocessing scheme is illustrated step-by-
step in Appendix C for the first signal of each transmitter. The final preprocessed
pulse-shaped signals for all transmitters are included in Appendix C.

C. IDENTIFICATION PHASE
1. Reduced Set Representation

One of the main drawbacks of the wavelet transform is the shift variance,
since the wavelet coefficients of a signal and a shifted replica can be totally different.
Therefore, a Euclidean distance measure (introduced by Aware, Inc., 1992) is used as

the technique for the classification of signals.
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Figure 3.1 Signal samples from four different transmitters

(a) Signal 1 from Transmitter 1 (b) Signal 1 from Transmitter 2
(c) Signal 1 from Transmitter 3 (c) Signal 1 from Transmitter 4

Mallat and Zhong (1989) demonstrated that the maxima extracted from the
modulus of the wavelet coefficients can be used to reconstruct the input signal. That
is, the maxima of the modulus of the wavelet coefficients contain approximately the
same amount of information as the-original signal. Consequently, signal analysis can
be performed based on the wavelet extremals, which form a reduced signal represen-
tation.

Thus, wavelet coefficients at each scale have been replaced by their extremal
values. Hence, the reduced set is only nonzero where the scale has an extremal, and
is equal to the original value at these locations. Wavelet scale coefficients, which are

not extremals, are set to zero.
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Figure 3.2 Preprocessed signal samples from four different transmitters

(a) Signal 1 from Transmitter 1 (b) Signal 1 from Transmitter 2
(c) Signal 1 from Transmitter 3 (c) Signal 1 from Transmitter 4

2. Ranking/Matching Algorithm

The first step in computing a pairwise distance measure is to rank the peaks
of the sets to be compared. That is, the peaks at each scale are ranked by their
amplitudes. The second step is to match the ranked peaks to form pairs. The peak
with the highest rank in one set is matched to the peak with the highest rank in
the other set. The next in rank is matched to that of the other set, and so on. To
illustrate the ranking and matching scheme, let us consider f (k) and g (k), as shown
in Figure 3.3. We first rank the peaks by amplitude. The amplitudes of the sfg-
nals in ascending order are -2, -1, 1, 2, 3, 5 for f(k), and -1, 0, 0.5, 1, 2.5, 4 for
g (k). Then, we match the peaks by taking corresponding ranked peaks and forming
pairs. The peak with the highest rank in f (k) is 5; the peak with the highest rank in
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gure 3.3 Signals to be matched:
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Table 3.1 Matched pairs of signals f (k) and g (k)

(columns show matched pairs, ranked in decreasing order from left to right)

g (k) is 4. We match these peaks with highest ranks first. Then, we match the next in
rank, which are 3 from f (k) and 2.5 from g (k), and so on. The ranked and matched
pairs are tabulated in Table 3.1. The matching scheme does not require the number
of elements in both sets to be the same. When a peak in one set does not have
a corresponding peak in the other, we insert a zero into the set that has a smaller

number of peaks, and form the pairs by matching the remaining peaks and the zeros.
3. Distance Measure

The third step is to compute a distance measure for the matched pairs. The
distance assigned to the pair is the sum over the Euclidean distances in each scale.
Thus,

d(d, V) = > (Wi, (a] - 8)))? (3.1)

(k,l) arelocations of the matched peaks
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where a7 and ¥’ are the wavelet maxima at scale 7, and af and b are the values o7, b/
at temporal locations k and [, respectively, and Wi,, is the weighting factor at scale
J for the relative distances between the corresponding coordinates of matched peaks.

The weighting factor, W{;’,, is defined as
Wiy =|ni—nf| (3.2)

where n and nf are the coordinates of a} and b}, respectively.

The similarity between two sets is described in terms of the sum of the Eu-
clidean distances of amplitudes weighted by the square root of the relative distances
between the corresponding coordinates. Basically, a small value | 7, —7] | and | al—b |
imply a high degree of similarity between o/ and &/.

As can be seen from Equation (3.1), this method provides no penalty if the
peaks happen to be at the same location, or the amplitudes of the peaks are equal to
each other. The penalty weight, W{,l, is determined by the separation of the peaks.
Large separation between the matched peaks corresponds to large penalty factors.
The distance measure also depends on the amplitude difference of the matched peaks.
The distance measure is directly proportional to the difference in amplitude. It should
be noted that even identical scale outputs with offset in time (due to signal delay)

will have a nonzero weighting factor.
4. Modification to Weighting Factor

We now introduce a lineup procedure and a modified weighting term to offset
the shortcoming of the technique, described in Section III.C.3. This is the most
robust method for obtaining reliable distance measures, and is used to obtain the
experimental results.

There are four different sets of signals. Each set belongs to a different trans-
mitter. The method defined above was used to determine the transmitting source of
the signal. For this purpose, a template for each transmitter set is needed to mea-
sure the similarity with any signal of interest. The objective is to apply the distance
measure algorithm to identify the transmitters.

Matching peaks by ranking preserves the order of the peaks when the signals to
be compared are very similar (i.e., identical), which then causes the weighting factor
in Equation (3.2) to be a constant denoted by W. For example, if we shift f (k) in
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Figure 3.3 four units to the right and compare it to f (k), the weighting factor in W
in Equation (3.2) is 4 for all matched peaks. Since the amplitudes of the matched
peaks are the same, the distance measure defined in Equation (3.1) is zero, in spite
of the nonzero weighting factor W. This is not the case when we add noise to one or
both of the signals, because it will cause amplitude difference between matched peaks.
Even though the signals are similar, a nonzero distance measure will be computed.
Furthermore, this distance measure will be dominated by the constant weighting
factor W. We need to reduce the weighting factor in such cases by eliminating the
offset between the signals. To eliminate this problem, the maximum peaks of the two
sets are aligned by removing the time shift offset between the signals.

The first signal of the four sets was chosen as a template. To improve the ac-
curacy of the algorithm, every signal was aligned with each template before applying
the distance measure, Equation (3.1). Hence, the relative distance between the max-
imum matched peaks of the signal and templates is zero. Accordingly, the weighting
factor, Wi,,, will be zero for the maximum peaks for all templates. Applying zero
weight for the distance with the corresponding (i.e., proper) template makes sense,

but not for the other templates. Therefore, the weighting factor is modified to be

i _ [ Inl—nl k#I
Wk’l_{ ) Ll (3.3)

Now, a small distance measure implies more accurately that the signal belongs to the

set from which the template came.
5. Application of Distance Measure Algorithm

The fourth, eighth, and sixteenth order Daubechies wavelet functions were
used to compute the WT of the preprocessed signals. The distance measure algorithm
was applied to measure the similarity between the wavelet coefficients of the signal to
be identified and the templates. From experimental considerations, the eighth order
Daubechies (Dau-8) wavelet functions gave satisfactory results, whereas Dau-4 and
Dau-16 did not. The Dau-8 wavelet function, which was used as the mother wavelet,

is shown in Figure 3.4.
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Figure 3.4 [Eighth order Daubechies wavelet function

a. Transmitter 1

The distance values at Scale 11 between the first four signals
from Transmitter 1 and the templates are tabulated and shown in Table 3.2. As
expected, the distance value with Template 1 is significantly less than that with the
other templates, since Template 1 is the template for the signals from Transmitter 1,

and small distance values imply high similarity.

[ Scale 11 | Template 1 | Template 2 | Template 3 | Template 4 |

Signal1 {0 44.3073 14.7737 107.8438
Signal 2 | 3.0527 47.2375 16.3406 103.8587
Signal 3 | 2.6195 40.5894 13.797 99.7881
Signal 4 | 1.0806 42.9072 15.4847 105.308

Table 3.2 Distance measures at Scale 11 for Signals 1 — 4 of Transmitter 1

As can be seen from Table 3.2, the distance values, d, between signals from
Transmitter 1 énd Template 1 are well separated from those of the other templates.
Zero value in distance indicates perfect match, and occurs between Signal 1 and
Template 1. This is expected since Signal 1 was chosen as a template for the set.

A thresholding technique can be introduced to automate the identification
procedure by defining a threshold level for each template. For example, one can
compare the maximum value of Set 1 with the minimum values of other templates.
Determining the threshold levels is not addressed in this study; however, comparing

the minimum and maximum values of the template outputs may be quite useful to
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evaluate the performance of the identification scheme. The maximum and minimum
values quoted in the remainder of Chapter 3 are obtained from Appendix B. At Scale
11 with Template 1, the maximum distance value is 5.3971, whereas the nearest
minimum distance value of the other templates is 12.52. This minimum occurs with
Template 3, which indicates that Transmitter 1 and Transmitter 3 have a'somewhat
similar output (i.e., turn-on behavior). The ratio of the minimum Template 3 output
to the maximum Template 1 output is 2.319, which shows how well the Template 1
results are separated from the other template results. This separation ratio is 2.381
and 1.66 for Scale 10 and Scale 9, respectively. Lower scales were not useful in terms

of the similarity measurement, and were not included.
b. Transmitters 2, 3, and 4

Similarly, the application of the distance measure to the other
three sets resulted in the following separation ratios. They show how well the signais
of a particular set are separated from the other sets under worst case conditions.
They are 3.56, 2.76, and 1.88 for signals from Transmitter 2 at Scales 11, 10, and
9, respectively. The following separation ratios were obtained at Scales 11, 10, and
o 4.64, 1.98, and 3.73 for signals from Transmitter 3, and 1.75, 1.4, 1.24 for signals
from Transmitter 4. Signal versus template output plots for all signal sets are given in
Appendix C. For example, one can obtain minima, maxima, and standard deviation
of the distance measures very easily. It should be noted that, for Transmitters 1, 2,

and 3, nine signals were used while, for Transmitter 4, only six signals were usable.
c. Probability of Identification

Signal-to-Noise Ratios (SNRs) for all signals were estimated. As
seen in Figure (3.1), the signal waveforms can be split into three parts. The off region
is where there is no signal; the transition region is where there is a build-up from off to
on state; and the on region is where the signal is at steady state. We can assume that
the off region consists of noise only, allowing the computation of the noise power.
Noise and signal coexist in the on region. The signal power can be computed by
finding the power in the on region and subtracting the noise power. Hence, we can
compute the SNR’s for all sets. An average SNR value of 32.38 dB, 40.87 dB, 38.58
dB, and 31 dB was computed for Set 1, Set 2, Set 3, and Set 4, respectively.
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Figure 3.5 Probability of identification (P;) of the signals

(a) P; of signals from Transmitter 1 (b) P; of signals from Transmitter 2

(c) P; of signals from Transmitter 3 (c) P; of signals from Transmitter 4

Gaussian white noise was added to all sets to decrease the SNR levels. We
repeated the experiment eleven times for different SNR values, and obtained the
probability of identification versus SNR plots for the signals. Results are shown in
F igure 3.5. Note that, when the signal of interest is from Transmitter 1 and its SNR is
higher than 16 dB, then its identification probability is high, and the distance-based
algorithm is reliable. The minimum SNR values required for a reliable classification

at Scale 11 are 30, 23, and 30 dB for signals from Transmitter 2, 3, and 4, respectively.
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d. Attempts to Reduce the Processing Load

Using a reduced data set (i.e., taking the local extremal in dis-
tance computation) reduced the computational complexity. In addition, two ap-
proaches were attempted to obtain acceptable performance while minimizing the
computational effort. In the first approach, the signal was decimated by using a
Chebychev -2 filter after median filtering of the envelope. This reduced the num-
ber of points and, therefore, the number of computations. The distance algorithm
using the decimated data did not work well enough to classify the signals and was
not pursued further. In the second approach, instead of matching all the maxima of
the signal of interest and the template, only the highest four peaks from each were
matched, and a distance measure was computed. Even the original data did not
permit successful classification; hence, noisy versions of the signal were not tried.

Matching of the peaks of the signal and template includes ranking. Therefore,
it is highly affected by noise. To minimize the noise effect in the matching of peaks,
point-by-point matching was used instead of ranking, but the results were not satis-
factory. In summary, distance measures that use all extremals and match them by

ranking are the most effective scheme in classifying the four signal sets.
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IV. CONCLUSION

A. CLASSIFICATION OF PUSH-TO-TALK COMMUNICATION
SIGNALS '

The main objective of this study was to determine a wavelet-based algorithm
designed to extract features to identify push-to-talk transmitters. Robustness, com-
pact signal representation capability, and low computational complexity are the main
advantages of the wavelet analysis, which was used for feature extraction.

Push-to-talk communication recordings provided for this research have a com-
mon feature: They all include a transition from the off-to-on state, as well as the
on-to-off state. The turn-on transition phase is unique for each transmitter, and can
be used for classification purposes. The recordings differ from each other by the wave-
form in the transition region and the duration. The feature for the classification of
the signals is contained in the signal envelopes. The turn-on part of the envelope is
a transient and, hence, a wideband signal.

The push-to-talk recordings were not in appropriate forms for WT analysis.
Thus, the recordings were preprocessed to become usable for WT processing. Differen-
tiation of the envelope of the signals was used to transform the data into pulse-shaped
transients. Median filtering was applied to both the envelope and the differential to
improve the signal-to-noise ratio. Median filtering was preferred since it does not
broaden the transient features of the signal.

A distance algorithm was introduced in this work. It was based on a Euclidean
distance measure between the wavelet coefficients of two data set on a given scale.
Decisions about the origin of the signal was made according to the distance measures
between the signals and the templates, where each template represented a different
transmitter. A small distance value implied that the signal belonged to the same set
as that particular template. In its current form, the classification assumes that any
signal of interest belongs to one of the four sets.

The distance algorithm was applied to four different signal sets. The first
recording in any of the sets was designated to be the template. Instead of using all
the wavelet coefficients, just the local extrema were used. Using only edge points by

taking the local extrema reduced the computational complexity in the algorithm.

35




The distance measure between the signal and the templates is the sum of all
Euclidean distances between matched peaks of the signal and the templates. It also
includes a penalty factor due to the relative square root distance between the matched
ranked pairs and their difference in amplitude. Matching signal peaks to the template
is performed by ranking. Before matching the pairs, the maximum peak of the signal
is aligned with the maximum of the templates. This reduced the penalty weight for
like signals that are not aligned in time.

The WT of the signals was computed using Daubechies-4 (Dau-4), Daubechies-
8 (Dau-8), and Daubechies-16 (Dau-16) as mother wavelets. Experimentally, it was
found that Dau-8 worked best with this data set.

Decimating the signal envelope before taking the differential reduces the num-
ber of points and, hence, decreases the number of computations. The distance algo-
rithm was applied to the decimated sequences, but the results did not allow classifi-
cation of the signals.

We also considered using only the four highest wavelet coefficients at a given
scale in the distance computation to reduce the computational complexity. However,
simulations showed that the information cited was not sufficient. The distance algo-
rithm described in Section III, using all the extremas, matching the peaks by ranking,
and permitting a penalty according to Equation (3.3) allowed robust identification of

the signal sets.

B. RECOMMENDATION FOR FUTURE STUDIES

The distance algorithm introduced in Chapter III gave promising results in
classifying the four signal sets provided for this research. Three important issues have
not been addressed in this research: the template selection, a threshold technique,
and incorporation of information from other scales. In this work, templates were
chosen arbitrarily from the sets, and the distance algorithm was applied only to the
four signal sets. When the signals to be identified are from these sets, the algorithm
was capable of classifying the signals. However, if the signals do not belong to these
sets, the algorithm will compute a distance to each of the templates, which can lead
to misclassification. A thresholding technique and robust template selection should

be the subject of further study.
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Also, 1o attempt was made to combine information from several scales. Iden-
tification was obtained by using just one scale. Typically, Scale 11 worked best. If the
distance information from Scales 9 and 10 could be used, a more robust identification

performance should be realized.
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APPENDIX A. DEVELOPMENT OF NECESSARY
CONDITIONS

NECESSARY CONDITION 1:

The condition given by Equation (2.38) can be derived by integrating both
sides of Equation (2.31) (Burrus and Gopinath, 1993).

/ é(t)dt = / S ho (k) (2t — k)t (A1)
= Soho(k) [ 6 (2t - Kyt

Let m = 2t — k, so dt = £dm. Substituting into Equation (A.1) gives

[o@a = 3@ / 6 (m)dm (A2)
[o@d _ 1
[ é(m)dm 5%

The left side of Equation (A.2) is equal to one, and so
1
—2' ; hO (k> - 1)

or

> ho(k)=2. (A.3)

NECESSARY CONDITION 2

¢ forms an orthonormal set for L2 (R). Therefore, the inner product of ¢ (t)

with integer translate of itself is
(@ (8),6:(©) = [ 6D (¢t — k) = 5 (k). (A.4)
Substituting Equation (2.31) into (A.4) gives

[ £ ko (n)ho (m)é (2t = m) (2(¢ ~ k) — m)dt = § (),

23 ho (m)ho (m /¢>(2t-— 6 (2(t — k) —m)dt = § (k).
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o

Let 2t = 7, s0 dt = & and
23 ho (m)ho (m )5 [6(7 - m)(r =2~ m)dr =5(k).
Since the integral is equal to & (n — m — 2k) from (A.4), then
—ZZho m)é (n —m —2k) = 6 (k).
Let n = m + 2k; then Equation (A.5) becomes

Zho Yo (n — 2k) = 26 (k).

NECESSARY CONDITION 3
Let k = 0; thep Equation (A.6) becomes
Zhg Yho(n) = 2,
Zn: lho(n)|* = 2.

NECESSARY CONDITION 4

Reproducing Equation (A.6)
> ho (R)ho (n — 2k) = 26 (k).
Summing over & of both sides gives

k

Breaking Equation (A.8) into even and odd ordered terms, we obtain

k

Rearranging terms results in

m
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(A.5)

(A.6)

(A7)

(A8)

> [Z ho (2m)ho (2k +2m) + > ko (2k + 2m + 1)ho (2m + 1)} =2 (A.9)

> {Z ho (2k + 2m)} ho (2m) + ) [Z ho (2k + 2m + 1)] ho (2m +1) = 2. (A.10)




B |

Substituting Equations (2.41) and (2.42) into Equation (A.10), gives
S1) ho(2m)+ 5,3 ho(2m+1) =2.
Applying the same equations again into Equation (A.11) éves
S2+52=2.
Equations 2.41 and 2.42 state that
S1+ 8 =2.
Solving for 5; and S, in Equations (A.11) and (A.12), gives

Sl = Zho (2TL) = 1’

Sy=> hy(2n+1)=1.

41

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)
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APPENDIX B. DISTANCE MEASURES

A. SIGNALS FROM TRANSMITTER 1 ARE THE INPUTS

TEMPLATE 1

SIGNAL I:
SIGNAL 2:
SIGNAL 3:
SIGNAL 4:
SIGNAL §:
SIGNAL 6:
SIGNAL 7:
SIGNAL 8:
SIGNAL 9:

TEMPLATE 2

SIGNAL 1:
SIGNAL 2:
SIGNAL 3:
SIGNAL 47
SIGNAL &:
SIGNAL 6:
SIGNAL 7:
SIGNAL 8:
SIGNAL 9:

TEMPLATE 3

SIGNAL 1:
SIGNAL 2:
SIGNAL 3:
SIGNAL 4:
SIGNAL 5:
SIGNAL 6:
SIGNAL 7:
SIGNAL 8:
SIGNAL 9

TEMPLATE 4

SIGNAL 1:
SIGNAL 2:
SIGNAL 3:
SIGNAL 4:
SIGNAL 4:
SIGNAL 6:
SIGNAL 7:
SIGNAL 8:
SIGNAL 9

SCALE6 SCALE7 SCALE8 SCALEY9 SCALE 10 SCALE 11

0.0000
0.0154
0.0119
0.0119
0.0096
0.0187
0.0088
0.0184
0.0108

0.0000
0.0189
0.0357
0.0090
0.0596
0.0144
0.0156
0.0353
0.0349

0.0000
0.1321
0.0512
0.0518
0.0811
0.1260
0.0644
0.0335
0.1020

0.0000
0.1166
0.1026
0.1234
0.1272
0.1907
0.2489
0.1883
0.4137

0.0000
0.5972
0.6823
0.3941
1.1857
0.5007
0.5075
0.5085
1.0445

0.0000
3.0527
2.6195
1.0806
4.2015
2.1553
3.4189
2.7106
5.3966

SCALE6 SCALE7 SCALE8 SCALE9 SCALE10 SCALE 11

0.2835
0.3811
0.3828
0.2978
0.3043
0.3253
0.2867
0.3772
0.3756

0.2481
0.2786
0.3385
0.2723
0.3478
0.2469
0.2623
0.3061
0.3014

0.5950
0.6446
0.4982
0.5886
0.4959
0.8060
0.5220
0.5358
0.5133

2.5081
2.4572
2.3074
2.3877
2.3277
2.3600
2.0454
2.1604
1.9071

9.6966
8.9884
8.6315
8.8995
8.1022
9.1666
9.1751
8.8586
8.6736

44.3073
47.2375
40.5894
42.9072
39.6375
43.6621
39.6036
40.6839
39.2300

SCALE'6 SCALE7 SCALE8 SCALE9 SCALE 10 SCALE 11

0.0293
0.0195
0.0292
0.0147
0.0247

0.0143 °

0.0215
0.0454
0.0333

SCALE6 SCALE7 SCALE8 SCALE9 SCALE 10

0.3094
0.3395
0.3230
0.3675
0.3766
0.3035
0.3733
0.2758
0.3427

0.0478
0.0516
0.0873
0.0461
0.1011
0.0448
0.0571
0.0721
0.0683

0.5771
0.5918
0.6083
0.5963
0.6255
0.5860
0.6054
0.5979
0.6121

0.1806
0.2315
0.1219
0.1442
0.1338
0.1829
0.1285
0.1630
0.1201

1.2600
1.3712
1.2067
1.2665
1.1815
1.3969
1.1867
1.2183
1.1942

43

0.7911
0.7833
0.7441
0.7797
0.7385
0.6879
0.8024
0.7261
0.7172

4.7861
4.9459
4.6558
4.8759
4.7152
4.9315
4.3094
4.4715
4.3671

3.2748
3.4095
3.3865
3.1756
2.8243
3.2091
3.2493
3.3426
3.0344

23.4442
21.3511
21.4529
22.1737
20.7366
22.9453
22.0092
21.8996
21.8617

14.7737
16.3406
13.7970
15.4847
13.1612
13.4287
13.7654
14.3787
12.5220

SCALE 11
107.8438
103.8587
99.7881
105.3080
101.1619
110.3185
95.2878
99.7182
101.6282




B. SIGNALS FROM TRANSMITTER 2 ARE THE INPUTS

TEMPLATE 1

SIGNAL 1:
SIGNAL 2:
SIGNAL 3:
SIGNAL 4:
SIGNAL 6&:
SIGNAL 6:
SIGNAL 7:
SIGNAL &:
SIGNAL 9:

TEMPLATE 2

SIGNAL 1:
SIGNAL 2:
SIGNAL 3:
SIGNAL 4:
SIGNAL 5:
SIGNAL 6:
SIGNAL 7:
SIGNAL 8:
SIGNAL 9:

TEMPLATE 3

SIGNAL 1:
SIGNAL 2:
SIGNAL 3:
SIGNAL 4:
SIGNAL 5:
SIGNAL 6:
SIGNAL 7:
SIGNAL 8:
SIGNAL 9:

TEMPLATE 4

SIGNAL 1:
SIGNAL 2:
SIGNAL 3:
SIGNAL 4:
SIGNAL 5:
SIGNAL 6:
SIGNAL 7:
SIGNAL 8:
SIGNAL 9:

SCALE6 SCALET7 SCALE8 SCALE9 SCALE 10 SCALE 11

0.2835
0.1008
0.2231
0.1587
0.2397
0.1881
0.1906
0.3259
0.3105

SCALE 6 SCALE7 SCALE8 SCALE?Y

0.0000
0.1504
0.0926
0.1542
0.1100
0.0919
0.1120
0.0429
0.0585

0.2481
0.2111
0.2929
0.3089
0.3638
0.2625
0.3823
0.2937
0.3787

0.0000
0.1834
0.1289
0.1445
0.1513
0.0599
0.0864
0.0602
0.1117

0.5950
0.5449
0.6255
0.7071
0.6821
0.6220
0.6591
0.7425
0.6678

0.0000
0.2414
0.2083
0.2714
0.1427
0.0953
0.2697
0.3798
0.2090

2.5081
2.4071
2.2173
2.4259
2.6701
2.6232
2.3317
2.5765
2.5760

0.0000
1.1648
0.3845
0.2385
0.2236
0.2324
1.0350
0.2762
1.1790

9.6966
9.9080
9.5509
10.2745
10.6592
10.7310
10.0235
11.2478
11.1999

SCALE 10
0.0000
2.9675
2.0463
2.9824
1.4235
3.0988
0.4110
3.4554
3.0197

SCALE 6 SCALE7 SCALES8 SCALE9 SCALEI10

0.3185
0.1653
0.3053
0.2162
0.3320
0.2723
0.2483
0.3857
0.4016

0.2155
0.2228
0.3015
0.3174
0.3800
0.2287
0.3425
0.2846
0.3610

0.5388
0.4821
0.6483
0.7455
0.6067
0.6431
0.7296
0.8665
0.6024

2.5937
2.8090
2.4348
2.4423
2.6860
2.5235
2.5858
2.5850
2.8528

10.7275
10.7830
10.0656
10.9963
11.4619
11.5436
10.9103
12.4298
11.8614

44.3073
42.9127
45.2351
45.9598
50.7797
49.5033
50.3606
49.7514
52.8772

SCALE 11
0.0000
8.3316

11.7426

10.2347

12.0260
3.5685
6.5288
2.7844
8.5858

SCALE 11
52.0090
46.1492
48.1584
48.9938
55.0565
55.4853
55.0225
54.1137
57.5092

SCALE 6 SCALE7 SCALES8 SCALE9 SCALE10 SCALE 11

0.0688
0.2709
0.1439
0.2207
0.1785
0.1251
0.1568
0.1382
0.1242

0.3144
0.4742
0.2997
0.3734
0.2800
0.3715
0.2853
0.2722
0.3436

0.7227
0.7804
0.7299
0.7884
0.6635
0.8402
0.8519
0.8705
0.6856

44

24151
2.4630
2.3018
2.6920
2.7456
29717
2.6483
2.6883
2.4425

10.7828
12.0574
12.1275
12.1243
11.6775
12.1831
11.8194
11.7220
12.4913

46.0266
53.2623
51.6991
49.1001
49.5180
47.9240
52.1264
47.9139
50.0139




C. SIGNALS FROM TRANSMITTER 3 ARE THE INPUTS

TEMPLATE 1

SIGNAL 1:
SIGNAL 2:
SIGNAL 3:
SIGNAL 4:
SIGNAL 6&:
SIGNAL 6:
SIGNAL 7:
SIGNAL &:
SIGNAL 9:

TEMPLATE 2

SIGNAL 1:
SIGNAL 2:
SIGNAL 3:
SIGNAL 4:
SIGNAL 5:
SIGNAL 6:.
SIGNAL 7:
SIGNAL 8:
SIGNAL 9:

TEMPLATE 3

SIGNAL 1:
SIGNAL 2:
SIGNAL 3:
SIGNAL 4:
SIGNAL 5:
SIGNAL 6:
SIGNAL 7:
SIGNAL 8&:
SIGNAL 9:

TEMPLATE 4

SIGNAL 1:
SIGNAL 2:
SIGNAL 3:
SIGNAL 4:
SIGNAL 5:
SIGNAL 6:
SIGNAL 7:
SIGNAL 8:
SIGNAL 9:

SCALE6 SCALE7 SCALE8 SCALE9 SCALE10 SCALE 11

0.0293
0.0258
0.0258
0.0243
0.0351
0.0181
0.0204
0.0211
0.0132

SCALE6 SCALE7 SCALES8 SCALEY

0.3185
0.2770
0.3123
0.3022
0.2388
0.2715
0.2536
0.2530
0.2634

SCALE6 SCALE7 SCALES8 SCALESY

0.0000
0.0145
0.0140
0.0087
0.0202
0.0173
0.0080
0.0202
0.0165

0.0478
0.0486
0.0488
0.0380
0.0413
0.0522
0.0407
0.0487
0.0385

0.2155
0.2549
0.2733
0.2595
0.2737
0.2588
0.2180
0.2886
0.2249

0.0000
0.0182
0.0574
0.0243

" 0.0205

0.0460
0.0164
0.0689
0.0355

0.1806
0.1886
0.1760
0.2365
0.2032
0.1437
0.1965
0.1396
0.1556

0.5388
0.6212
0.5398
0.6690
0.5984
0.5428
0.5879
0.5516
0.4667

0.0000
0.1264
0.0679
0.1422
0.1187
0.0522
0.2044
0.0991
0.0718

0.7911
0.7386
0.7199
0.8262
0.7480
0.6904
0.6858
0.7145
0.6820

2.5937
2.6437
2.9106
2.7903
2.6087
2.5480
2.3883
2.6977
2.5582

0.0000
0.1059
0.1825
0.0815
0.0708
0.1326
0.1456
0.1083
0.1247

3.2748 14.7737
3.4439 16.0413
2.9349 14.0412
3.1571 15.9305
3.3249 15.7214
3.3154 15.6880
3.0757 14.9835
3.1253 14.8495
2.6568 13.9337

SCALE 10 SCALE 11

10.7275 52.0090
10.7470 58.6234
8.9611 54.0690
9.6474 53.2208
10.4443 58.9315
9.9815 52.8461
10.0475 54.4567
10.0750 50.2555
7.2510 43.6765

SCALE 10 SCALE 11

0.0000 0.0000
0.2600 2.5576
0.5453 1.9164
0.2531 0.5718
0.2221 1.8509
0.5117 1.8301
0.2368 0.6173
0.3890 1.7340
1.3389 2.9981

SCALE6 SCALE7 SCALEg& SCALE9 SCALE10 SCALE 11

0.3651
0.3238
0.3244
0.3540
0.2868
0.3084
0.2942
0.2827
0.2940

0.5208
0.5603
0.5725
0.5550
0.5780
0.5596
0.5274
0.5685
0.5262

1.1902
1.3472
1.2440
1.3640
1.3037
1.2133
1.3532
1.2326
1.0909

45

5.0321
5.0435
5.3595
5.2345
5.0934
4.8809
4.6602
5.0956
4.9186

23.6918 115.5311
23.8257 122.6571
22.0900 119.5437
22.9700 116.3537
23.5456 124.5405
23.0578 117.4324
23.2007 118.0311
23.2144 113.1257
19.2677 104.3332




D. SIGNALS FROM TRANSMITTER 4 ARE THE INPUTS

TEMPLATE 1

SIGNAL 1:
SIGNAL 2:
SIGNAL 3:
SIGNAL 4:
SIGNAL 5:
SIGNAL 6:
SIGNAL 7:
SIGNAL 8:
SIGNAL 9:

TEMPLATE 2

SIGNAL 1:
SIGNAL 2:
SIGNAL 3:
SIGNAL 4:
SIGNAL 5:
SIGNAL 6:
SIGNAL T7:
SIGNAL 8:
SIGNAL 9:

TEMPLATE 3

SIGNAL 1:
SIGNAL 2:
SIGNAL 3:
SIGNAL 4:
SIGNAL 5:
SIGNAL 6:
SIGNAL 7:
SIGNAL 8:
SIGNAL 9:

TEMPLATE 4

SIGNAL I:
SIGNAL 2:
SIGNAL 3:
" SIGNAL 4:
SIGNAL 5:
SIGNAL 6:
SIGNAL 7:
SIGNAL 8:
SIGNAL 9:

SCALE 6 SCALE7 SCALE8 SCALEY9 SCALE10 SCALE 11

0.3094 0.5771 1.2600 4.7861
0.3736 0.9836 3.0273 9.2057
0.3331 0.6218 1.3112 5.3833
0.3133 0.5338 1.3146 5.2073
0.4374 0.5831 1.1027 5.0784
0.3432 0.5722 1.2066 5.4055
0.2560 0.4075 0.8567 3.8320
0.2761 0.4673 1.3469 4.5214
0.2699 0.6246 1.7105 7.5262
SCALE6 SCALE7 SCALES8 SCALESY
0.0688 0.3144 0.7227 2.4151
0.2104 0.6746 1.6970 4.8096
0.1649 0.2812 0.8120 2.6968
0.1370 0.2327 0.8829 2.6756
0.1847 0.3027 0.5789 2.4825
0.1039 0.2557 0.6717 2.8612
0.1637 0.1727 0.5083 2.1826
0.1866 0.2580 0.8640 2.9625
0.1472 0.3361 0.9322 4.4756

SCALE6 SCALE7 SCALES8 SCALES9

0.3651
0.4188
0.2974
0.3393
0.4295
0.3967
0.2582
0.2952
0.2697

0.5208
0.8757
0.5532
0.4954
0.5159
0.5028
0.3225
0.3749
0.5467

1.1902
2.3272
1.0881
1.1246
1.0414
1.0955
0.7155
1.1948
1.3014

5.0321
8.7571
5.5421
5.4472
5.1931
5.6244
4.1114
5.2218
6.8545

23.4442
38.3416
24.3415
24.1267
23.9667
23.0626
18.1956
28.6522
30.5762

SCALE 10
10.7828
18.7294
11.2046
11.2253
10.9737
10.1952
6.2022
12.0382
14.4394

SCALE 10
23.6918
35.0247
24.5287
24.5602
24.3348
23.1653
18.9958
25.6827
27.5281

SCALE6 SCALE7 SCALES8 SCALE9 SCALEI10

0.0000
0.1732
0.0544
0.0610
0.0986
0.0528
0.0814
0.0935
0.0776

0.0000
0.5275
0.0466
0.0694
0.0655
0.0506
0.1619

0.3151

0.3200

0.0000
1.2713
0.3896
0.4249
0.1514
0.0990
0.4059
0.6468
0.9673

46

0.0000
3.4912

0.4135-

0.3959
0.4633
0.5903
1.7605
2.8861
3.8654

0.0000
9.3186
2.4614
2.6097
2.2296
3.7932
4.4264
13.5405
13.8608

107.8438
164.0387
113.3645
112.2255
107.1038
110.6970
83.7372

133.7564
136.1710

SCALE 11
46.0266
72.9213
50.4846
57.7131
45.7909
53.3557
38.8847
54.5502
55.8276

SCALE 11
115.5311
158.7921
120.8973
122.9673
114.7444

- 119.4670

94.1898
132.6012
133.7723

SCALE 11
0.0000
30.3546
6.5196
14.8425
6.8575
11.8557
22.1434
47.6043
49.1905




E. SIGNALS FROM TRANSMITTER 1 ARE THE INPUTS:
10 DB SNR REDUCTION

TEMPLATE 1
SCALE6 SCALE7 SCALE8 SCALE9 SCALE10 SCALE 11
SIGNAL 1:  0.0375 01043 02759  0.7683  1.3094 = 3.3502
SIGNAL 2:  0.0468  0.1085  0.3193  0.7442  2.0640 3.6190
SIGNAL 3:  0.0431 00800 02972 06296  1.3008 3.5047
SIGNAL 4:  0.0504  0.1064 03262 07624  1.7088 3.4416
SIGNAL 5:  0.0421  0.0706  0.3415  0.6067 15736 5.5176
SIGNAL6:  0.0508  0.0743  0.3502  0.8021 1.5439 5.0661
SIGNAL7:  0.0291 01163 03047 06125  1.2903 3.8559
SIGNAL 8  0.0377 01302 02676 05524  1.3807 3.7544
SIGNAL9:  0.0337 01012 02747 05609  1.5242 5.8662
TEMPLATE 2
SCALE6 SCALE7 SCALES SCALE9 SCALE10 SCALE 11
SIGNAL1:  0.3553 02728  0.6642 238099  10.4138 47.5912
SIGNAL 2: 02227 02168 06260 27765 11.2037 48.0249
SIGNAL 3:  0.3561  0.2650  0.5283 24908  9.4202 43.7669
SIGNAL 4: 02451 02573 07072  2.5680  10.7271 46.0365
SIGNAL 5. 02911 02100 05792  2.2985  9.2627 42.8591
SIGNAL 6: 02959  0.2452 06188 28187  10.3953 49.7207
SIGNAL7: 02792 03019 05697 25446  8.9549 426443
SIGNAL & 03114 02584 05708  2.5522  9.9918 43.5053
SIGNAL9:  0.3268  0.2492 05431 22212  9.0768 42.7932
TEMPLATE 3
SCALE 6 SCALE7 SCALES8 SCALE9 SCALE10 SCALE 11
SIGNAL1:  0.0359 01303 03973 10658  3.8188 15.6111
SIGNAL 2: 0.0389 0.0850 0.3844 1.0643 4.3243 16.0790
SIGNAL 3:  0.0430 00984  0.3287 10871  4.0226 16.3021
SIGNAL 4  0.0373 01119 03942 10760  3.9323 16.3871
SIGNAL 5:  0.0346 00814 03848  1.1143  4.0585 15.6347
SIGNAL 6: 0.0390 0.0843 0.4338 0.9025 3.6642 14.2155
SIGNAL7:  0.0231 01120 03312 11282  4.3608 17.4460
SIGNAL 8: _ 0.0353 0.1325 0.3284 1.0011 4.0881 16.2695
SIGNAL9:  0.0315 01139 03366 10887  3.4706 13.8132
TEMPLATE 4

SCALE6 SCALE7 SCALES8 SCALEY9 SCALE 10 SCALE 11
SIGNAL 1: 0.3328 0.5612 1.3761 4.9135 22.4741 107.4480
SIGNAL 2: 0.2562 0.4936 1.2892 4.8175 22.7738 102.1320
SIGNAL 3: 0.3450 0.5801 1.1919 4.5966 20.6796 100.6919
SIGNAL 4: 0.3263 0.5714 1.3486 4.7544 23.1659 106.4092
SIGNAL 5: 0.3633 0.5636 1.2499 4.3789 20.7572 97.1743
SIGNAL 6: 0.3042 0.5860 1.3593 5.1565 22.9280 115.2724
SIGNAL 7: 0.3338 0.4590 1.2041 4.6390 20.0266 96.3665
SIGNAL 8: 0.3610 0.5003 1.2423 4.3976 21.1563 98.0142
SIGNAL 9: 0.3608 0.5617 1.2187 4.3478 21.0854 100.2342




F. SIGNALS FROM TRANSMITTER 2 ARE INPUTS:

10 DB SNR REDUCTION

TEMPLATE 1

SIGNAL 1:
SIGNAL 2:
SIGNAL 3:
SIGNAL 4:
SIGNAL 5:
SIGNAL 6:
SIGNAL 7:
SIGNAL 8&:
SIGNAL 9:

TEMPLATE 2

SIGNAL 1:
SIGNAL 2:
SIGNAL 3:
SIGNAL 4:
SIGNAL 5:
SIGNAL 6:
SIGNAL 7:
SIGNAL 8:
SIGNAL 9:

TEMPLATE 3

SIGNAL 1:
SIGNAL 2:
SIGNAL 3:
SIGNAL 4:
SIGNAL 5:
SIGNAL 6:
SIGNAL 7:
SIGNAL 8:
SIGNAL 9:

TEMPLATE 4

SIGNAL 1:
SIGNAL 2:
SIGNAL 3:
SIGNAL 4:
SIGNAL 5:
SIGNAL 6:
SIGNAL 7:
SIGNAL 8:
SIGNAL 9:

SCALE6 SCALE7 SCALE8 SCALE9 SCALE10 SCALE 11

0.2998
0.1149
0.2483
0.1683
0.2497
0.1699
0.2107
0.3312
0.3012

'SCALE6 SCALE7 SCALE8 SCALESY

0.0353
0.1267
0.0796
0.1472
0.0873
0.1078
0.1093
0.0543
0.0705

SCALE 6 SCALE7 SCALES8 SCALE9

0.3378
0.1748
0.3212
0.2274
0.3371
0.2661
0.2570
0.3939
0.3870

SCALE 6 SCALE7 SCALES8 SCALE?Y

0.1007
0.2222
0.1201
0.2068
0.1445
0.1370
0.1369
0.1439
0.1384

0.2975
0.2315
0.3285
0.2955
0.3499
0.3207
0.4434
0.3403
0.4205

0.1029
0.1354
0.1694
0.1665
0.1667
0.1217
0.1754
0.1232
0.1886

0.2623
0.2254
0.3164
0.3074
0.3617
0.2662
0.3376
0.3071
0.3634

0.2607
0.2770
0.3323
0.3380
0.2756
0.3112
0.3029
0.2392
0.3070

0.6936
0.4739
0.6071
0.6568
0.6493
0.6972
0.8268
0.8018
0.7371

0.3632
0.2513
0.4690
0.4090
0.2662
0.4735
0.6404
0.5491
0.4846

0.6906
0.4875
0.7229
0.7264
0.6446
0.7978
0.9129
0.9439
0.8302

0.8255
0.6216
0.8504
0.8050
0.6615
0.9905
0.9008
0.8706
0.9407

48

2.5272
2.1895
2.1489
2.4697
2.6333
2.3188
2.5254
2.6353
2.3549

1.0898
0.9447
0.6193
0.8105
0.9486
1.5780
1.3555
1.1825
2.8504

2.3864
2.3375
2.2456
2.4591
2.5659
2.5988
2.2908
2.4221
2.3635

2.5868
2.0512
2.20563
2.4836
2.7278
2.0032
2.7150
3.2170
3.0078

9.2397 41.5986
9.2329 42.4683
9.2771 44.6032
9.9201 46.1952
10.4630 46.5821
9.9021 = 43.4716
10.3927 45.1681
10.2630 47.7992
10.5009 47.2822

SCALE 10 SCALE 11
3.2442 9.5561
2.8265 8.8378
3.2228 9.6555
7.2229 14.2345
2.9736 13.1501
5.9286 21.2568
8.2270 18.1313
6.1173 8.1226
9.8706 19.6026

SCALE 10 SCALE 11

10.3773 48.5725
9.7415 46.8498
9.7959 48.5703

10.1376 49.7111

11.1484 51.7127

10.7795 48.9604

10.6121 47.4262

10.1326 54.1949

10.7260 49.2730

SCALE 10 SCALE 11

9.9048 44.4863
10.6348 48.9550
10.3880 45.7483
11.3920 47.6053
10.2407 51.0403
11.8533 53.8810
11.7296 53.8566
12.0501 46.7004
12.4255 52.4257




G. SIGNALS FROM TRANSMITTER 3 ARE INPUTS:
10 DB SNR REDUCTION

TEMPLATE 1

SIGNAL 1:
SIGNAL 2:
SIGNAL 3:
SIGNAL 4:
SIGNAL 5:
SIGNAL 6:
SIGNAL 7:
SIGNAL 8:
SIGNAL 9:

TEMPLATE 2

SIGNAL 1:
SIGNAL 2:
SIGNAL 3:
SIGNAL 4:
SIGNAL 5.,
SIGNAL 6:
SIGNAL 7:
SIGNAL 8:
SIGNAL 9:

TEMPLATE 3

SIGNAL 1:
SIGNAL 2:
SIGNAL 3:
SIGNAL 4:
SIGNAL 5:
SIGNAL 6:
SIGNAL 7:
SIGNAL 8:
SIGNAL 9:

TEMPLATE 4

SIGNAL 1:
SIGNAL 2:
SIGNAL 3:
SIGNAL 4:
SIGNAL &:
SIGNAL 6:
SIGNAL 7:
SIGNAL 8:
SIGNAL 9:

SCALE6 SCALE7 SCALE8 SCALE9 SCALE 10 SCALE 11
0.0478 0.1274 0.5144 1.1785 4.0000 18.1846

0.0365 0.1234 0.4115 1.2813 4.1553 18.5676
0.0684 0.1219 0.3577 1.1853 3.8279 16.0824
0.0523 0.1170 0.4138 1.1140 4.3548 18.4488

0.0348 0.1336 0.5074 1.2930 3.9845 17.9401
0.0550 0.1275 0.4415 1.1653  3.9053 18.0756
0.0478 0.1284 0.4557 1.1081 3.6589 17.1620
0.0531 0.0784 0.3782 1.1528 4.0583 17.6531
0.0320 0.1208 0.3447 1.0956 3.6144 16.3529

SCALE6 SCALE7 SCALES8 SCALEY9 SCALE 10 SCALE 11
0.2735 0.2305 0.8375 3.2786 12.6610 59.1120
0.2489 0.2555 0.7085 3.4069 13.2948 64.9324
0.2403 0.2307 0.6814 3.2335 13.1578 56.7576
0.2543 0.2354 0.6180 3.1848 12.5049 61.7671
0.2546 0.1906 0.8137 3.4720 12.2753 62.2135
0.2131 0.1717 0.8292 3.7610 11.4564 59.3982
0.2271 0.2378 0.7183 2.9783 12.5854 62.4342
10.2246 0.2336 0.7436 3.1300 12.7692 62.2046
0.2461 0.2098 0.6158 2.7632 10.8813 49.2295

SCALE6 SCALE7 SCALE8 SCALEY9 SCALE10 SCALE 11

0.0203 0.0815 0.6030 0.9418 2.5238 6.4598
0.0201 0.0950 0.4735 1.0146 3.0909 9.5653
0.0465 0.0833 0.3634 0.9566 2.7794 6.4284
0.0362 0.0954 0.4588 0.7535 2.6418 7.8841
0.0253 0.0951 0.5927 1.0052 2.3614 7.6033
0.0485 0.0933 0.5202 1.0480 1.7231 5.9440
0.0328 0.0992 0.5659 0.7845 2.2809 8.0012
0.0354 0.0650 0.4643 0.8565 2.4123 8.5680

0.0193 . 0.0851 0.3710 0.7626 2.3411 5.4612

SCALE6 SCALE7 SCALE8 SCALE9 SCALE 10 SCALE 11
0.3287 0.5182 1.5587 5.8201 25.7509 122.5166
0.1893 0.5261 1.4451 5.8022 26.7385 129.8573
0.2463 0.5399 1.3549 5.8309 25.7889 119.4983
0.3308 0.5394 1.3779 5.5470 25.6568 127.0563
0.2908 0.4859 1.6405 6.0450 25.2253 127.3273
0.2010 0.4756 1.5749 6.3159 24.4335 122.7423
0.2183 0.5214 1.4519 5.5075 25.3703 126.9125
0.1728 0.4902 1.4167 5.4070 25.5855 126.2491
0.2523 0.5030 1.2223 5.0020 23.1458 109.1846
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H. - SIGNALS FROM TRANSMITTER 4 ARE INPUTS:

10 DB SNR REDUCTION

TEMPLATE 1

SIGNAL 1:
SIGNAL 2:
SIGNAL 3:
SIGNAL 4:
SIGNAL &:
SIGNAL 6:

TEMPLATE 2

SIGNAL 1:
SIGNAL 2:
- SIGNAL 3:
SIGNAL 4:
SIGNAL 5:
SIGNAL 6:

TEMPLATE 3

SIGNAL 1:
SIGNAL 2:
SIGNAL 3:
SIGNAL 4:
SIGNAL 5:
SIGNAL 6:

TEMPLATE 4

SIGNAL 1:
SIGNAL 2:
SIGNAL 3:
SIGNAL 4:
SIGNAL 5:
SIGNAL 6:

SCALE6 SCALE7 SCALES8 SCALEY9 SCALE 10

0.3270
0.3248
0.3220
0.4828
0.3500
0.2645

SCALE 6 SCALE7 SCALE8 SCALEY

0.0850
0.1570
0.1514
0.2097
0.1014
0.1545

SCALE 6 SCALE7 SCALE8 SCALEY

0.3780
0.3014
0.3627
0.4693
0.3955
0.2624

SCALE6 SCALE7 SCALES8 SCALEY

0.0328
0.0725
0.0789
0.1255
0.0563
0.0804

0.5990
0.5290
0.6044
0.4838
0.5793
0.4183

0.3153
0.2157
0.2960
0.2221
0.3442
0.2012

0.5205
0.4644
0.5140
0.4223
0.5023
0.3113

0.0486
0.1947
0.0741
0.2016
0.0770
0.2145

1.6784
1.7946
1.5821
1.1432
1.2490
1.0173

1.0099
0.8610
0.8447
0.7012
0.7740
0.7999

1.5290
1.5550
1.4117
1.0334
1.1421
0.9258

0.4642
0.2994
0.3058
0.2156
0.2064
0.7304
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5.8691
5.8942
6.1968
5.2652
5.8876
4.2269

3.3984
3.0255
3.6034
2.9600
2.8104
2.0320

5.9429
5.8505
6.1926
5.4432
5.9523
4.2049

1.0811
0.9492
1.0105
0.7971
1.9411
1.9989

25.0385
23.5419
25.1165
22.8460
23.7742
18.5720

SCALE 10
13.1845
13.4155
12.9318
10.1786
13.7426
8.7308

SCALE 10
24.3696
22.9977
24.7024
23.3718
24.0663
18.3186

SCALE 10
4.1788
2.7563
4.5781
1.8608
4.4024
7.3588

SCALE 11
118.3022
117.8467
118.5933
112.4434
113.3160
84.9252

SCALE 11
62.8281
53.4214
50.1148
54.1355
49.5709
34.0015

SCALE 11
121.4879
121.4152
123.3364
117.9020
119.0966
87.9338

SCALE 11
23.1301
11.3148
9.8803
17.1363
11.8552
29.4086




PREPROCESSED SIGNALS AND TEMPLATE OUTPUTS

APPENDIX C
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Figure C.1 Preprocessing scheme to obtain an appropriate waveform for Signal 1
of Transmitter 1. From top to bottom: Signal 1 of Transmitter 1 (d.c. removed);
Upper envelope of Signal 1; Envelope after median filtering of size 100; Differential
of median filtering output; Differential after median filtering of size 50.
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Figure C.2 Preprocessing scheme to obtain appropriate waveform for Signal 1 of
Transmitter 2. From top to bottom: Signal 1 of Transmitter 2 (d.c. removed); Upper
envelope of Signal 1; Envelope after median filtering of size 100; Differential of median

filtering output; Differential after median filtering of size 50.
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Figure C.3 Preprocessing scheme to obtain appropriate waveform for Signal 1 of
Transmitter 3. From top to bottom: Signal 1 of Transmitter 3 (d.c. removed); Upper
envelope of Signal 1; Envelope after median filtering of size 100; Differential of median

filtering output; Differential after median filtering of size 50.
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Figure C4 Pfeprocessing scheme to obtain appropriate waveform for Signal 1 of
Transmitter 4. From top to bottom: Signal 1 of Transmitter 4 (d.c. removed); Upper
envelope of Signal 1; Envelope after median filtering of size 100; Differential of median
filtering output; Differential after median filtering of size 50.
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Figure C.5 Preprocessed signals from Transmitter 1.
Top row (left to right): Signal 1; Signal 2; Signal 3
Center row: Signal 4; Signal 5; Signal 6
Bottom row: Signal 7; Signal 8; Signal 9
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Figure C.6 Preprocessed signals from Transmitter 2.
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Top row (left to right): Signal 1; Signal 2; Signal 3
Center row: Signal 4; Signal 5; Signal 6
Bottom row: Signal 7; Signal 8; Signal 9
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Figure C.7 Preprocessed signals from Transmitter 3.
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Top row (left to right): Signal 1; Signal 2; Signal 3
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Figure C.8 Preprocessed signals from Transmitter 4.
Top row (left to right): Signal 1; Signal 2; Signal 3
Center row: Signal 4; Signal 5; Signal 6
Bottom row: Signal 7; Signal 8; Signal 9

58



template 1 template 2 template 3 template 4
. v 120,

6

'S
-t
=N
=)

d atscale 11

d atscale 10

45

datscale 9

Figure C.9 Distance measures at the output of templates when signals from Trans-
mitter 1 are the inputs. Horizontal axis shows the number of the signals. Each column
represents a template. First row is for Scale 11; second row is for Scale 10; third row

is for'Scale 9.
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Figure C.10 Distance measures at the output of templates when signals from Trans-
mitter 2 are the inputs. Horizontal axis shows the number of the signals. Each column

represents a template. First row is for Scale 11; second row is for Scale 10; third row

is for Scale 9.
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Figure C.11 Distance measures at the output of templates when signals from Trans-
mitter 3 are the inputs. Horizontal axis shows the number of the signals. Each column
represents a template. First row is for Scale 11; second row is for Scale 10; third row

is for Scale 9.
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Figure C.12 Distance measures when signals from Transmitter 4 are the inputs.
Horizontal axis shows the number of the signals. Each column represents a template.

First row is for Scale 11; second row is for Scale 10; third row is for Scale 9.
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Figure C.13 Distance measures when signals from Transmitter 1 are inputs and
their SNR values are 10 dB lower than the original data set. Horizontal axis shows
the number of the signals. Each column represents a template. First row is for Scale

11; second row is for Scale 10; third row is for Scale 9.
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Figure C.14 Distance measures when signals from Transmitter 2 are inputs and
their SNR values are 10 dB lower than the original data set. Horizontal axis shows
the number of the signals. Each column represents a template. First row is for Scale

11; second row is for Scale 10; third row is for Scale 9.
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Figure C.15 Distance measures when signals from Transmitter 3 are inputs and
their SNR. values are 10 dB lower than the original data set. Horizontal axis shows
the number of the signals. Each column represents a template. First row is for Scale

11; second row is for Scale 10; third row is for Scale 9.
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Figure C.16 Distance measures when signals from Transmitter 4 are inputs and
their SNR values are 10 dB lower than the original data set. Horizontal axis shows
the number of the signals. Each column represents a template. First row is for Scale
11; second row is for Scale 10; third row is for Scale 9.
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APPENDIX D
MATLAB CODES

wtsignal.m

Purpose:
To transform the push-to-talk recordings into pulse shape forms which are suitable
for wavelet analysis. '

Synopsis:
wtsignal

Description:

The program preprocésses the data as mentioned in Chapter 3. The signal vector to
be preprocessed is entered as the input.

Created by Yalcin Payal, November, 1995.

x=input(’enter the signal to be preprocessed = ’)
x=x-mean(x);
y=envelope(x);
my=mdsmooth(y,100);
dmy=diff(my);
mdmy=mdsmooth(dmy,50);
end




distance.m

Purpose:
To compute distance measure between the signal and the four templates. Signals are

4096 points long.

Synopsis:
distance

Description:

Wavelet transform matrix of the signal and the templates are the inputs to the pro-
gram. Program is written to work with the wavelet transform matrices produced
by the subroutine “mapdn.m” The subroutine “mapdn.m” produces the magnitude
square of the wavelet coefficients at each scale, “distance.m” needs the amplitudes
of the wavelet coefficients. Thus, a modification to “mapdn.m” is essential prior to
run “distance.m.” mapdn.m and other functions called by mapdn.m can be found
in (Newland, 1992) or in (Pitta, 1995). d1, d2, d3, d4 are the outputs of the pro-
gram and they are distance measures between the signal and Template 1, Template
2, Template 3, Template 4, respectively at each scale.

Created by Yalcin Payal, November, 1995.

clear, clg

sl=input(’ enter the WT of the signal to be identified = ’);
kkl=input('enter the WT of the template 1= ’);
mmIl=input(’enter the WT of the template 2=");
ttl=input(’enter the WT of the template 3= );
vvl=input(’enter the WT of the template 4= ");

for n=1:11

t=length(kk1(1,:))/(2");

col=n+2;

a=kk1(col,1:t:length(kk1(1,:)));
b=mm1(col,1:t:length(mm1(1,:)));
c=tt1(col,1:t:length(tt1(1,:)));
f=vvl(col,1:t:length(vv1(1:)));
s=s1(col,1:t:length(s1(1,:)));

a=localext(a);

[
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b=localext(b);

c=localext(c);

f=localext(f);

d=localext(s);

[templ,i]=sort(a);
[temp2,j]=sort(b);
[temp3,k]=sort(c);
[temp4,k]=sort(f);
[x,m]=sort(d);
shiftl=m(length(x))-i(length(a));
shift2=m(length(x))-j(length(b));
shift3=m(length(x))-k(length(c));
shift4=m (length(x))-q(length(£));
‘wl=[abs(m-i-shift1)];
w2=[abs(m-j-shift2)];
w3=[abs(m-k-shift3)]; A
w4=[abs(m-q-shift4)]; wl(find(wl==0))=ones(1,length(find(wl==0)));
w2(find(w2==0))=ones(1,length(find(w2==0)))
w3(find(w3==0))=ones(1,length(find(w3==0)))
w4(find(w4==0))=ones(1,length(find(wd==0)))
d1(n)=sum(sqrt(wl.*(templ-x)?));
d2(n)=sum(sqrt(w2.*(temp2-x)?));
d3(n)=sum(sqrt(w3.*(temp3-x)?));
d4(n)=sum(sqrt(w4.*(temp4-x)?));

end

?
b
?

]
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localext.m

Purpose:
To take the local extrema of the signal.

Synopsis:

localext.

Description:

LOCALEXT extracts the local extrema of a vector. LOCALEXT (X) returns a copy
of vector X with all non extreme values set to 0.

[Y,K] = LOCALEXT (X) will also return the number of deleted samples of X.
function [ou,k|=localext(sg)

(c) Copyright 1994, by Universidad de Vigo

Author: Sergio-J. Garcia Galan, e-mail: Uvi_-Wave@tsc.uvigo.es

I=length(sg);
sg=sg(:)’;
ou=zeros(1,l);"
ax=abs(sg);

MX = max(ax);
MX=MX+1;
ou(1)=sg(1);
ou(l)=sg(l);

k=0;
for i=2:1-1
if (sg(i) > sg(i-1)) & (sg(i) > sg(i+1))
ou(i)=sg(i);
k=k+1;
end
if (sg(i) < sg(i-1)) & (sg(i) < sg(i+1))
ou(i)=sg(i);
k=k+1;
end
end
k=l-k;
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envelope.m

Purpose:
To take the envelope of the push-to-talk communication signals.

Synopsis:
envelope .

Description:

[Y,M]=ENVELOPE (x) returns the envelope , Y , and modulation index, M, of the
AM signal in vector x.

Created by Dennis W. Brown, 1993.

Naval Postgraduate School, Monterey, CA.

May be freely distribufed; not for use in commercial applications.
Part of the SPC Toolbox (Brown, 1995).

function [y,m] = envelope(x)
y=1[];
if nargin =1,
error(’envelope: One argument required...’);
end
if min(size(x)) =1,
error(’envelope: Input arg ”x” must be a 1xN or Nx1 vector.’);
end;
x = x(2);
y = abs(hilbert(x));
mmax = max(y);
mmin = min(y);

m = (mmax - mmin) / (mmax + mmin);
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mdsmooth.m

Purpose:
To filter the envelope of the push-to-talk communication signals and the differential

of the envelopes by median filtering.

Synopsis:
mdsmooth.

Description:
[y] = MDSMOOTH(X,L) smooths the input vector X using amedian filter with a

rectangular window of “L” samples.
MDSMOOTH is implemented as a mex function on someinstallations.

Created by LT-Dennis W. Brown

Naval Postgraduate School, Monterey, CA

May be freely distfibuted; not for use in commercial applications.
Part of the SPC Toolbox (Brown, 1995).

function [y] = mdsmooth(x,L)

y = [;

if nargin = 2, /
error('mdsmooth: Invalid number of input arguments...’);

end;

if min(size(x)) =1,
error('mdsmooth: Input arg ”x” must be a 1xN or Nx1 vector.’);
end;
x = x(2);
Ns = length(x);
y = zeros(Ns,1);
x = [zeros(L/2-1,1); x ; zeros ; zeros(L/2,1)];
for k=1:Ns
y(k,1) = median(x(k:k+L-1,1));

end
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